1  Geographic data in Julia

using Pkg
Pkg.status()
Status `~/work/geocompjl/geocompjl/Project.toml`
  [c9ce4bd3] ArchGDAL v0.10.8
  [13f3f980] CairoMakie v0.13.2
  [a93c6f00] DataFrames v1.7.0
  [0703355e] DimensionalData v0.29.13
  [62cb38b5] GeoDataFrames v0.3.12
  [68eda718] GeoFormatTypes v0.4.4
  [cf35fbd7] GeoInterface v1.4.1
  [61d90e0f] GeoJSON v0.8.2
  [db073c08] GeoMakie v0.7.11
  [3251bfac] GeometryOps v0.1.15
  [a90b1aa1] LibGEOS v0.9.4
  [c94c279d] Proj v1.8.1
  [a3a2b9e3] Rasters v0.14.2
  [10745b16] Statistics v1.11.1
  [2913bbd2] StatsBase v0.34.4
"output"

1.1 Introduction

This chapter outlines two fundamental geographic data models โ€” vector and raster โ€” and introduces the main Python packages for working with them. Before demonstrating their implementation in Python, we will introduce the theory behind each data model and the disciplines in which they predominate.

The vector data model (Section 1.2) represents the world using points, lines, and polygons. These have discrete, well-defined borders, meaning that vector datasets usually have a high level of precision (but not necessarily accuracy). The raster data model (?sec-raster-data), on the other hand, divides the surface up into cells of constant size. Raster datasets are the basis of background images used in web-mapping and have been a vital source of geographic data since the origins of aerial photography and satellite-based remote sensing devices. Rasters aggregate spatially specific features to a given resolution, meaning that they are consistent over space and scalable, with many worldwide raster datasets available.

Which to use? The answer likely depends on your domain of application, and the datasets you have access to:

  • Vector datasets and methods dominate the social sciences because human settlements and and processes (e.g., transport infrastructure) tend to have discrete borders.
  • Raster datasets and methods dominate many environmental sciences because of the reliance on remote sensing data.

Julia has strong support for both data models. We will focus on GeoDataFrames.jl and the GeoInterface.jl ecosystem for working with vector data, including the packages GeometryOps.jl and LibGEOS.jl. We will focus on the Rasters.jl package for working with rasters.

TODO: alternatives, geostats, etc.

There is much overlap in some fields and raster and vector datasets can be used together: ecologists and demographers, for example, commonly use both vector and raster data. Furthermore, it is possible to convert between the two forms (see Chapter 5). Whether your work involves more use of vector or raster datasets, it is worth understanding the underlying data models before using them, as discussed in subsequent chapters.

1.2 Vector data

The geographic vector data model is based on points located within a coordinate reference system (CRS). Points can represent self-standing features (e.g., the location of a bus stop), or they can be linked together to form more complex geometries such as lines and polygons. Most point geometries contain only two dimensions (3-dimensional CRSs may contain an additional \(z\) value, typically representing height above sea level).

In this system, London, for example, can be represented by the coordinates (-0.1,51.5). This means that its location is -0.1 degrees east and 51.5 degrees north of the origin. The origin, in this case, is at 0 degrees longitude (a prime meridian located at Greenwich) and 0 degrees latitude (the Equator) in a geographic (โ€˜lon/latโ€™) CRS (Figure 1.1, left panel). The same point could also be approximated in a projected CRS with โ€˜Easting/Northingโ€™ values of (530000,180000) in the British National Grid, meaning that London is located 530 \(km\) East and 180 \(km\) North of the origin of the CRS (Figure 1.1, right panel). The location of National Gridโ€™s origin, in the sea beyond South West Peninsular, ensures that most locations in the UK have positive Easting and Northing values.

Figure 1.1: Illustration of vector (point) data in which location of London (the red X) is represented with reference to an origin (the blue circle). The left plot represents a geographic CRS with an origin at 0ยฐ longitude and latitude. The right plot represents a projected CRS with an origin located in the sea west of the South West Peninsula.

There is more to CRSs, as described in ?sec-coordinate-reference-systems-intro and Chapter 6 but, for the purposes of this section, it is sufficient to know that coordinates consist of two numbers representing the distance from an origin, usually in \(x\) and \(y\) dimensions.

TODO: explain the JuliaGeo ecosystem like they explain geopandas E.g GeoInterface defines how to access any geometry, then LibGEOS (wrapping GEOS), GeometryOps, Proj, etc consume such geometries.

1.2.1 Vector data classes

Juliaโ€™s geographic vector data model is based on the Simple Features standard, which is an ISO standard for representing vector data. Simple Features defines types of geometries (points, lines, polygons, multipolygons, etc.), as well as โ€œfeature collectionsโ€ that are basically tables of geometries associated with some data.

Starting with the highest level class, feature collections come in two flavours: - Loaded from file (Shapefile.Table, GeoJSON.FeatureCollection, โ€ฆ) - Tables with geometry columns (e.g. DataFrame, but can be any Julia table)

One can easily convert from feature collections to

using GeoDataFrames
df = GeoDataFrames.read("data/world.gpkg")
Precompiling GeoDataFrames...
    515.5 ms  โœ“ IteratorInterfaceExtensions
    566.7 ms  โœ“ LaTeXStrings
    530.8 ms  โœ“ CEnum
    573.4 ms  โœ“ TensorCore
    687.2 ms  โœ“ GeoFormatTypes
    660.4 ms  โœ“ Observables
    719.9 ms  โœ“ Statistics
    721.8 ms  โœ“ Requires
   1108.2 ms  โœ“ OrderedCollections
    482.3 ms  โœ“ DataValueInterfaces
    574.3 ms  โœ“ Reexport
   1635.2 ms  โœ“ OffsetArrays
    570.4 ms  โœ“ InvertedIndices
    682.5 ms  โœ“ Extents
    998.6 ms  โœ“ InlineStrings
    826.8 ms  โœ“ IntervalSets
    642.4 ms  โœ“ LRUCache
    517.1 ms  โœ“ StaticArraysCore
    622.9 ms  โœ“ DataAPI
    650.8 ms  โœ“ MappedArrays
    777.7 ms  โœ“ MPIPreferences
    814.3 ms  โœ“ OpenSSL_jll
    739.9 ms  โœ“ Bzip2_jll
   1383.4 ms  โœ“ Qhull_jll
   1972.4 ms  โœ“ boost_jll
   1303.9 ms  โœ“ Lz4_jll
   2609.6 ms  โœ“ SentinelArrays
   1025.4 ms  โœ“ ICU_jll
    968.8 ms  โœ“ libaec_jll
    785.1 ms  โœ“ libpng_jll
    906.2 ms  โœ“ Xorg_libXau_jll
    948.6 ms  โœ“ Hwloc_jll
    805.3 ms  โœ“ Giflib_jll
    868.6 ms  โœ“ LERC_jll
    933.5 ms  โœ“ SQLite_jll
    935.7 ms  โœ“ EarCut_jll
    930.5 ms  โœ“ JpegTurbo_jll
    783.0 ms  โœ“ snappy_jll
    927.3 ms  โœ“ XZ_jll
    832.8 ms  โœ“ Xorg_libXdmcp_jll
    894.9 ms  โœ“ brotli_jll
    797.8 ms  โœ“ Expat_jll
    860.4 ms  โœ“ MicrosoftMPI_jll
    976.7 ms  โœ“ Zstd_jll
    746.8 ms  โœ“ Xorg_xtrans_jll
    870.0 ms  โœ“ GEOS_jll
    790.4 ms  โœ“ Libgpg_error_jll
    788.8 ms  โœ“ Kerberos_krb5_jll
   1026.1 ms  โœ“ Xorg_libpthread_stubs_jll
    486.6 ms  โœ“ TableTraits
    904.5 ms  โœ“ XML2_jll
    539.8 ms  โœ“ StackViews
    702.7 ms  โœ“ PaddedViews
   2865.3 ms  โœ“ RecipesBase
   1089.6 ms  โœ“ IntervalSets โ†’ IntervalSetsRandomExt
    806.1 ms  โœ“ IntervalSets โ†’ IntervalSetsStatisticsExt
   3665.4 ms  โœ“ StringManipulation
   3162.3 ms  โœ“ DataStructures
   1064.6 ms  โœ“ PooledArrays
   1942.2 ms  โœ“ DiskArrays
   4900.5 ms  โœ“ FixedPointNumbers
    689.9 ms  โœ“ Missings
   1979.7 ms  โœ“ GeoInterface
    954.8 ms  โœ“ Thrift_jll
   1770.0 ms  โœ“ MPItrampoline_jll
   1715.7 ms  โœ“ OpenMPI_jll
   1168.7 ms  โœ“ HDF4_jll
   1849.6 ms  โœ“ MPICH_jll
    863.6 ms  โœ“ Blosc_jll
   1115.1 ms  โœ“ libzip_jll
    982.2 ms  โœ“ Libtiff_jll
    854.0 ms  โœ“ LibPQ_jll
   1154.2 ms  โœ“ Libgcrypt_jll
    604.4 ms  โœ“ MosaicViews
    888.5 ms  โœ“ IntervalSets โ†’ IntervalSetsRecipesBaseExt
    875.9 ms  โœ“ SortingAlgorithms
   1432.7 ms  โœ“ Tables
    858.8 ms  โœ“ GeoInterfaceRecipes
    998.8 ms  โœ“ Arrow_jll
   1074.9 ms  โœ“ LittleCMS_jll
   1315.4 ms  โœ“ PROJ_jll
   2945.9 ms  โœ“ HDF5_jll
   3660.6 ms  โœ“ ColorTypes
   1104.7 ms  โœ“ XSLT_jll
    918.5 ms  โœ“ OpenJpeg_jll
   1269.0 ms  โœ“ libgeotiff_jll
   2312.5 ms  โœ“ NetCDF_jll
  13683.7 ms  โœ“ StaticArrays
   2219.9 ms  โœ“ Xorg_libxcb_jll
   4351.9 ms  โœ“ ColorVectorSpace
   1163.3 ms  โœ“ StaticArrays โ†’ StaticArraysStatisticsExt
    981.1 ms  โœ“ Xorg_libX11_jll
    770.2 ms  โœ“ Xorg_libXext_jll
   1041.2 ms  โœ“ Libglvnd_jll
   1362.8 ms  โœ“ libwebp_jll
   8277.4 ms  โœ“ Colors
   2753.0 ms  โœ“ GDAL_jll
   4962.6 ms  โœ“ GDAL
  19233.2 ms  โœ“ GeometryBasics
  31036.0 ms  โœ“ PrettyTables
   6832.2 ms  โœ“ MakieCore
   1699.5 ms  โœ“ GeoInterfaceMakie
  27289.7 ms  โœ“ ImageCore
  11887.2 ms  โœ“ ArchGDAL
  44723.6 ms  โœ“ DataFrames
   2628.0 ms  โœ“ GeoDataFrames
  106 dependencies successfully precompiled in 99 seconds. 37 already precompiled.
177ร—11 DataFrame
152 rows omitted
Row geom iso_a2 name_long continent region_un subregion type area_km2 pop lifeExp gdpPercap
IGeometrโ€ฆ String? String String String String String Float64 Float64? Float64? Float64?
1 Geometry: wkbMultiPolygon FJ Fiji Oceania Oceania Melanesia Sovereign country 19290.0 885806.0 69.96 8222.25
2 Geometry: wkbMultiPolygon TZ Tanzania Africa Africa Eastern Africa Sovereign country 9.32746e5 5.22349e7 64.163 2402.1
3 Geometry: wkbMultiPolygon EH Western Sahara Africa Africa Northern Africa Indeterminate 96270.6 missing missing missing
4 Geometry: wkbMultiPolygon CA Canada North America Americas Northern America Sovereign country 1.0036e7 3.55353e7 81.953 43079.1
5 Geometry: wkbMultiPolygon US United States North America Americas Northern America Country 9.51074e6 3.18623e8 78.8415 51922.0
6 Geometry: wkbMultiPolygon KZ Kazakhstan Asia Asia Central Asia Sovereign country 2.72981e6 1.72883e7 71.62 23587.3
7 Geometry: wkbMultiPolygon UZ Uzbekistan Asia Asia Central Asia Sovereign country 4.6141e5 3.07577e7 71.039 5370.87
8 Geometry: wkbMultiPolygon PG Papua New Guinea Oceania Oceania Melanesia Sovereign country 4.6452e5 7.75578e6 65.23 3709.08
9 Geometry: wkbMultiPolygon ID Indonesia Asia Asia South-Eastern Asia Sovereign country 1.81925e6 2.55131e8 68.856 10003.1
10 Geometry: wkbMultiPolygon AR Argentina South America Americas South America Sovereign country 2.78447e6 4.29815e7 76.252 18797.5
11 Geometry: wkbMultiPolygon CL Chile South America Americas South America Sovereign country 8.14844e5 1.76138e7 79.117 22195.3
12 Geometry: wkbMultiPolygon CD Democratic Republic of the Congo Africa Africa Middle Africa Sovereign country 2.32349e6 7.37229e7 58.782 785.347
13 Geometry: wkbMultiPolygon SO Somalia Africa Africa Eastern Africa Sovereign country 4.84333e5 1.35131e7 55.467 missing
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ
166 Geometry: wkbMultiPolygon ET Ethiopia Africa Africa Eastern Africa Sovereign country 1.13239e6 9.73668e7 64.535 1424.53
167 Geometry: wkbMultiPolygon DJ Djibouti Africa Africa Eastern Africa Sovereign country 21880.3 912164.0 62.006 missing
168 Geometry: wkbMultiPolygon missing Somaliland Africa Africa Eastern Africa Indeterminate 1.6735e5 missing missing missing
169 Geometry: wkbMultiPolygon UG Uganda Africa Africa Eastern Africa Sovereign country 2.45768e5 3.88333e7 59.224 1637.28
170 Geometry: wkbMultiPolygon RW Rwanda Africa Africa Eastern Africa Sovereign country 23365.4 1.13454e7 66.188 1629.87
171 Geometry: wkbMultiPolygon BA Bosnia and Herzegovina Europe Europe Southern Europe Sovereign country 50605.1 3.566e6 76.561 10516.8
172 Geometry: wkbMultiPolygon MK Macedonia Europe Europe Southern Europe Sovereign country 25062.3 2.0775e6 75.384 12298.5
173 Geometry: wkbMultiPolygon RS Serbia Europe Europe Southern Europe Sovereign country 76388.6 7.13058e6 75.3366 13112.9
174 Geometry: wkbMultiPolygon ME Montenegro Europe Europe Southern Europe Sovereign country 13443.7 621810.0 76.712 14796.6
175 Geometry: wkbMultiPolygon XK Kosovo Europe Europe Southern Europe Sovereign country 11230.3 1.8218e6 71.0976 8698.29
176 Geometry: wkbMultiPolygon TT Trinidad and Tobago North America Americas Caribbean Sovereign country 7737.81 1.35449e6 70.426 31181.8
177 Geometry: wkbMultiPolygon SS South Sudan Africa Africa Eastern Africa Sovereign country 6.24909e5 1.1531e7 55.817 1935.88
using CairoMakie
using GeoMakie

f, a, p = poly(df.geom)
Precompiling CairoMakie...
    466.2 ms  โœ“ RangeArrays
    528.3 ms  โœ“ IndirectArrays
    563.2 ms  โœ“ PolygonOps
    606.5 ms  โœ“ StatsAPI
    765.3 ms  โœ“ AbstractFFTs
    589.8 ms  โœ“ Contour
    708.2 ms  โœ“ TriplotBase
    527.6 ms  โœ“ InverseFunctions
    593.3 ms  โœ“ EnumX
   1755.9 ms  โœ“ FillArrays
   1902.9 ms  โœ“ Format
    750.8 ms  โœ“ StableRNGs
   1414.5 ms  โœ“ Grisu
    782.4 ms  โœ“ AbstractTrees
    614.8 ms  โœ“ RoundingEmulator
    628.6 ms  โœ“ PtrArrays
    751.5 ms  โœ“ NaNMath
    971.9 ms  โœ“ TranscodingStreams
   2318.3 ms  โœ“ IrrationalConstants
   3926.9 ms  โœ“ MacroTools
    923.6 ms  โœ“ LazyModules
    863.7 ms  โœ“ Ratios
    716.9 ms  โœ“ Inflate
    635.9 ms  โœ“ ConstructionBase
    662.2 ms  โœ“ Adapt
   2587.1 ms  โœ“ AdaptivePredicates
    951.3 ms  โœ“ Statistics โ†’ SparseArraysExt
    784.9 ms  โœ“ SuiteSparse
    970.3 ms  โœ“ WoodburyMatrices
    950.0 ms  โœ“ DocStringExtensions
   1412.9 ms  โœ“ ProgressMeter
    917.3 ms  โœ“ Animations
    596.6 ms  โœ“ SignedDistanceFields
    886.8 ms  โœ“ Graphite2_jll
    763.2 ms  โœ“ Libmount_jll
   2170.6 ms  โœ“ ChainRulesCore
    879.8 ms  โœ“ LLVMOpenMP_jll
   2335.9 ms  โœ“ UnicodeFun
   1167.6 ms  โœ“ Rmath_jll
    724.2 ms  โœ“ Imath_jll
   1008.1 ms  โœ“ libfdk_aac_jll
    863.8 ms  โœ“ LAME_jll
    825.8 ms  โœ“ CRlibm_jll
    905.5 ms  โœ“ Ogg_jll
   1135.8 ms  โœ“ oneTBB_jll
    951.7 ms  โœ“ x265_jll
   1022.9 ms  โœ“ x264_jll
    837.1 ms  โœ“ libaom_jll
    819.1 ms  โœ“ LZO_jll
    936.6 ms  โœ“ Opus_jll
   1064.6 ms  โœ“ Libffi_jll
   1007.7 ms  โœ“ isoband_jll
    839.2 ms  โœ“ FFTW_jll
    987.6 ms  โœ“ OpenSpecFun_jll
    823.7 ms  โœ“ Libuuid_jll
    950.2 ms  โœ“ FriBidi_jll
    997.4 ms  โœ“ libsixel_jll
    771.7 ms  โœ“ OpenBLASConsistentFPCSR_jll
   1711.7 ms  โœ“ PkgVersion
   1948.4 ms  โœ“ FilePathsBase
   1326.2 ms  โœ“ FreeType2_jll
   2525.8 ms  โœ“ JSON
   6101.1 ms  โœ“ ColorSchemes
   1795.8 ms  โœ“ QuadGK
   7848.5 ms  โœ“ FileIO
   2462.0 ms  โœ“ IntelOpenMP_jll
   4520.0 ms  โœ“ ImageBase
   2325.1 ms  โœ“ Packing
   2283.9 ms  โœ“ ShaderAbstractions
   1086.0 ms  โœ“ Xorg_libXrender_jll
   1219.3 ms  โœ“ Gettext_jll
   1646.9 ms  โœ“ AxisArrays
  16391.8 ms  โœ“ SIMD
    798.1 ms  โœ“ InverseFunctions โ†’ InverseFunctionsTestExt
    594.8 ms  โœ“ InverseFunctions โ†’ InverseFunctionsDatesExt
   2423.8 ms  โœ“ AbstractFFTs โ†’ AbstractFFTsTestExt
    833.1 ms  โœ“ FillArrays โ†’ FillArraysStatisticsExt
    856.1 ms  โœ“ Showoff
   1672.4 ms  โœ“ FillArrays โ†’ FillArraysSparseArraysExt
   1263.4 ms  โœ“ AliasTables
   1500.0 ms  โœ“ Graphics
   1049.7 ms  โœ“ Ratios โ†’ RatiosFixedPointNumbersExt
   2036.0 ms  โœ“ SimpleTraits
   1088.8 ms  โœ“ ConstructionBase โ†’ ConstructionBaseIntervalSetsExt
    739.9 ms  โœ“ ConstructionBase โ†’ ConstructionBaseLinearAlgebraExt
   9543.9 ms  โœ“ PNGFiles
  14592.1 ms  โœ“ GridLayoutBase
   1357.8 ms  โœ“ ConstructionBase โ†’ ConstructionBaseStaticArraysExt
   1335.8 ms  โœ“ Adapt โ†’ AdaptSparseArraysExt
   1534.5 ms  โœ“ Adapt โ†’ AdaptStaticArraysExt
    815.2 ms  โœ“ OffsetArrays โ†’ OffsetArraysAdaptExt
   1168.3 ms  โœ“ AxisAlgorithms
   1185.9 ms  โœ“ LogExpFunctions
   1574.5 ms  โœ“ PDMats
   1232.9 ms  โœ“ ChainRulesCore โ†’ ChainRulesCoreSparseArraysExt
    878.5 ms  โœ“ AbstractFFTs โ†’ AbstractFFTsChainRulesCoreExt
   1055.4 ms  โœ“ Pixman_jll
   1435.9 ms  โœ“ StaticArrays โ†’ StaticArraysChainRulesCoreExt
   1524.0 ms  โœ“ Rmath
    884.5 ms  โœ“ Isoband
   1399.3 ms  โœ“ OpenEXR_jll
   1194.7 ms  โœ“ libvorbis_jll
    783.2 ms  โœ“ FilePathsBase โ†’ FilePathsBaseMmapExt
   1432.1 ms  โœ“ FilePaths
   2179.1 ms  โœ“ FilePathsBase โ†’ FilePathsBaseTestExt
   1917.9 ms  โœ“ FreeType
   1524.9 ms  โœ“ Fontconfig_jll
   1166.0 ms  โœ“ ColorBrewer
  40287.9 ms  โœ“ Unitful
   6387.1 ms  โœ“ IntervalArithmetic
   2444.7 ms  โœ“ QOI
   4392.7 ms  โœ“ Sixel
   5098.7 ms  โœ“ JpegTurbo
   1236.9 ms  โœ“ Glib_jll
   4164.5 ms  โœ“ WebP
   6315.4 ms  โœ“ MKL_jll
   2882.4 ms  โœ“ ImageAxes
    789.1 ms  โœ“ LogExpFunctions โ†’ LogExpFunctionsInverseFunctionsExt
   1157.0 ms  โœ“ StructArrays
   2698.4 ms  โœ“ LogExpFunctions โ†’ LogExpFunctionsChainRulesCoreExt
   5009.9 ms  โœ“ SpecialFunctions
   1206.6 ms  โœ“ FillArrays โ†’ FillArraysPDMatsExt
   4316.5 ms  โœ“ StatsBase
  19859.1 ms  โœ“ PlotUtils
   2630.5 ms  โœ“ OpenEXR
   3812.6 ms  โœ“ Interpolations
   1204.8 ms  โœ“ Unitful โ†’ ConstructionBaseUnitfulExt
   1013.7 ms  โœ“ Unitful โ†’ InverseFunctionsUnitfulExt
   1047.1 ms  โœ“ IntervalArithmetic โ†’ IntervalArithmeticIntervalSetsExt
   4620.6 ms  โœ“ FreeTypeAbstraction
   1431.7 ms  โœ“ Cairo_jll
   2229.5 ms  โœ“ ImageMetadata
    817.9 ms  โœ“ StructArrays โ†’ StructArraysAdaptExt
   1205.5 ms  โœ“ StructArrays โ†’ StructArraysSparseArraysExt
   1523.1 ms  โœ“ StructArrays โ†’ StructArraysStaticArraysExt
   1101.0 ms  โœ“ StructArrays โ†’ StructArraysLinearAlgebraExt
  26784.1 ms  โœ“ Automa
  10395.2 ms  โœ“ ExactPredicates
    981.8 ms  โœ“ ColorVectorSpace โ†’ SpecialFunctionsExt
   1824.5 ms  โœ“ HypergeometricFunctions
   1317.5 ms  โœ“ HarfBuzz_jll
   3543.0 ms  โœ“ SpecialFunctions โ†’ SpecialFunctionsChainRulesCoreExt
   2460.6 ms  โœ“ Interpolations โ†’ InterpolationsUnitfulExt
   3997.3 ms  โœ“ Netpbm
   3716.2 ms  โœ“ StatsFuns
   1378.4 ms  โœ“ libass_jll
   1229.7 ms  โœ“ Pango_jll
  21400.8 ms  โœ“ FFTW
  10329.3 ms  โœ“ DelaunayTriangulation
    961.1 ms  โœ“ StatsFuns โ†’ StatsFunsInverseFunctionsExt
  12504.4 ms  โœ“ MathTeXEngine
   2342.5 ms  โœ“ StatsFuns โ†’ StatsFunsChainRulesCoreExt
   1622.0 ms  โœ“ FFMPEG_jll
   1642.9 ms  โœ“ Cairo
   6148.3 ms  โœ“ Distributions
   1386.5 ms  โœ“ Distributions โ†’ DistributionsChainRulesCoreExt
   1458.5 ms  โœ“ Distributions โ†’ DistributionsTestExt
   1332.9 ms  โœ“ KernelDensity
  84424.7 ms  โœ“ TiffImages
   1013.2 ms  โœ“ ImageIO
 131731.8 ms  โœ“ Makie
  41970.0 ms  โœ“ CairoMakie
  162 dependencies successfully precompiled in 310 seconds. 110 already precompiled.
  1 dependency had output during precompilation:
โ”Œ MKL_jll
โ”‚   Downloading artifact: IntelOpenMP
โ””  
Precompiling ParsersExt...
    410.6 ms  โœ“ InlineStrings โ†’ ParsersExt
  1 dependency successfully precompiled in 0 seconds. 9 already precompiled.
Precompiling SerializationExt...
    365.6 ms  โœ“ LRUCache โ†’ SerializationExt
  1 dependency successfully precompiled in 0 seconds. 2 already precompiled.
Precompiling IntervalArithmeticRecipesBaseExt...
    671.5 ms  โœ“ IntervalArithmetic โ†’ IntervalArithmeticRecipesBaseExt
  1 dependency successfully precompiled in 1 seconds. 33 already precompiled.
Precompiling ArchGDALMakieExt...
   2153.4 ms  โœ“ ArchGDAL โ†’ ArchGDALMakieExt
  1 dependency successfully precompiled in 3 seconds. 306 already precompiled.
Precompiling GeoMakie...
    568.6 ms  โœ“ SortTileRecursiveTree
    879.2 ms  โœ“ GeometryOpsCore
   1108.9 ms  โœ“ CoordinateTransformations
   2499.4 ms  โœ“ Geodesy
   2530.7 ms  โœ“ Proj
   4161.5 ms  โœ“ GeometryOps
   1196.4 ms  โœ“ GeometryOps โ†’ GeometryOpsProjExt
  25375.2 ms  โœ“ GeoJSON
   1122.9 ms  โœ“ NaturalEarth
   1343.3 ms  โœ“ GeoJSON โ†’ GeoJSONMakieExt
   8964.5 ms  โœ“ GeoMakie
  11 dependencies successfully precompiled in 36 seconds. 276 already precompiled.

1.2.2 Raster from scratch

In this section, we are going to demonstrate the creation of rasters from scratch. We will construct two small rasters, elev and grain, which we will use in examples later in the book. Unlike creating a vector layer (see ?sec-vector-layer-from-scratch), creating a raster from scratch is rarely needed in practice because aligning a raster with the proper spatial extent is challenging to do programmatically (โ€œgeoreferencingโ€ tools in GIS software are a better fit for the job). Nevertheless, the examples will be helpful to become more familiar with the Rasters.jl data structures.

using Rasters
import GeoFormatTypes as GFT
Precompiling Rasters...
    627.7 ms  โœ“ FieldMetadata
    632.6 ms  โœ“ Interfaces
    811.6 ms  โœ“ ArrayInterface
    621.4 ms  โœ“ Flatten
   1239.0 ms  โœ“ CFTime
    511.1 ms  โœ“ ArrayInterface โ†’ ArrayInterfaceStaticArraysCoreExt
    816.5 ms  โœ“ ArrayInterface โ†’ ArrayInterfaceSparseArraysExt
   1665.3 ms  โœ“ Setfield
   1311.6 ms  โœ“ CommonDataModel
  14662.1 ms  โœ“ DimensionalData
    772.7 ms  โœ“ DimensionalData โ†’ DimensionalDataDiskArraysExt
   5468.8 ms  โœ“ Rasters
  12 dependencies successfully precompiled in 23 seconds. 58 already precompiled.
Precompiling ArrayInterfaceChainRulesCoreExt...
    370.8 ms  โœ“ ArrayInterface โ†’ ArrayInterfaceChainRulesCoreExt
  1 dependency successfully precompiled in 0 seconds. 11 already precompiled.
Precompiling DimensionalDataMakie...
    813.2 ms  โœ“ DimensionalData โ†’ DimensionalDataStatsBase
   6630.9 ms  โœ“ DimensionalData โ†’ DimensionalDataMakie
  2 dependencies successfully precompiled in 7 seconds. 277 already precompiled.
Precompiling RastersMakieExt...
   1301.8 ms  โœ“ Rasters โ†’ RastersStatsBaseExt
   6446.6 ms  โœ“ Rasters โ†’ RastersMakieExt
  2 dependencies successfully precompiled in 7 seconds. 291 already precompiled.
Precompiling RastersProjExt...
   1279.5 ms  โœ“ Rasters โ†’ RastersCoordinateTransformationsExt
   1377.6 ms  โœ“ Rasters โ†’ RastersProjExt
  2 dependencies successfully precompiled in 1 seconds. 92 already precompiled.
Precompiling RastersArchGDALExt...
   2315.4 ms  โœ“ Rasters โ†’ RastersArchGDALExt
  1 dependency successfully precompiled in 3 seconds. 165 already precompiled.

Conceptually, a raster is an array combined with georeferencing information, whereas the latter comprises:

  • Lookup vectors for the axes, encoding the spatial coordinates for each grid cell. These take the form of the X and Y dimensions in the raster that youโ€™ll see below.
  • A coordinate reference system (CRS) definition, specifying the association of the rasterโ€™s coordinates with the surface of the earth.

Therefore, to create a raster, we first need to have an array with the values, and then supplement it with the georeferencing information. Letโ€™s create the arrays elev and grain. The elev array is a \(6 \times 6\) array with sequential values from 1 to 36. It can be created as follows using base Julia functions.

elev = reshape(UInt8(1):UInt8(36), (6, 6))
6ร—6 reshape(::UnitRange{UInt8}, 6, 6) with eltype UInt8:
 0x01  0x07  0x0d  0x13  0x19  0x1f
 0x02  0x08  0x0e  0x14  0x1a  0x20
 0x03  0x09  0x0f  0x15  0x1b  0x21
 0x04  0x0a  0x10  0x16  0x1c  0x22
 0x05  0x0b  0x11  0x17  0x1d  0x23
 0x06  0x0c  0x12  0x18  0x1e  0x24

The grain array represents a categorical raster with values 0, 1, 2, corresponding to categories โ€œclayโ€, โ€œsiltโ€, โ€œsandโ€, respectively. We will create it from a specific arrangement of pixel values, using reshape.

v = UInt8[
  1, 0, 1, 2, 2, 2, 
  0, 2, 0, 0, 2, 1, 
  0, 2, 2, 0, 0, 2, 
  0, 0, 1, 1, 1, 1, 
  1, 1, 1, 2, 1, 1, 
  2, 1, 2, 2, 0, 2
]
grain = reshape(v, (6, 6))
6ร—6 Matrix{UInt8}:
 0x01  0x00  0x00  0x00  0x01  0x02
 0x00  0x02  0x02  0x00  0x01  0x01
 0x01  0x00  0x02  0x01  0x01  0x02
 0x02  0x00  0x00  0x01  0x02  0x02
 0x02  0x02  0x00  0x01  0x01  0x00
 0x02  0x01  0x02  0x01  0x01  0x02

Note that in both cases, we are using the uint8 (unsigned integer in 8 bits, i.e., 0-255) data type, which is sufficient to represent all possible values of the given rasters (see ?tbl-numpy-data-types). This is the recommended approach for a minimal memory footprint.

What is missing now is the georeferencing information (see ?sec-using-rasters-jl). In this case, since the rasters are arbitrary, we also set up arbitrary dimension lookups for the x and y axes, where:

  • The origin (\(x_{min}\), \(y_{max}\)) is at -1.5,1.5
  • The raster resolution (\(delta_{x}\), \(delta_{y}\)) is 0.5,-0.5

We can add this information using rasterio.transform.from_origin, and specifying west, north, xsize, and ysize parameters. The resulting transformation matrix object is hereby named new_transform.

new_x = X(range(-1.5, step=0.5, length=6))
new_y = Y(range(1.0, step=-0.5, length=6))
Y 1.0:-0.5:-1.5

We can now construct a Raster object, from the elev array and the dimensions new_x and new_y.
We assign to it a CRS of EPSG:4326 (which encodes that the coordinate system is longitude/latitude on the โ€œstandardโ€ WGS84 definition of the Earthโ€™s curvature).

Here, we use the GFT.EPSG(code) constructor to create an object that encodes a reference code under the European Petroleum Survey Group (EPSG) authorityโ€™s database of coordinate reference systems.

elev_raster = Raster(elev, (new_x, new_y); crs = GFT.EPSG(4326))
โ”Œ 6ร—6 Raster{UInt8, 2} โ”
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ dims โ”
  โ†“ X Projected{Float64} -1.5:0.5:1.0 ForwardOrdered Regular Points,
  โ†’ Y Projected{Float64} 1.0:-0.5:-1.5 ReverseOrdered Regular Points
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ raster โ”ค
  extent: Extent(X = (-1.5, 1.0), Y = (-1.5, 1.0))
  crs: EPSG:4326
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
  โ†“ โ†’     1.0     0.5     0.0    -0.5    -1.0    -1.5
 -1.5  0x01    0x07    0x0d    0x13    0x19    0x1f
 -1.0  0x02    0x08    0x0e    0x14    0x1a    0x20
 -0.5  0x03    0x09    0x0f    0x15    0x1b    0x21
  0.0  0x04    0x0a    0x10    0x16    0x1c    0x22
  0.5  0x05    0x0b    0x11    0x17    0x1d    0x23
  1.0  0x06    0x0c    0x12    0x18    0x1e    0x24

The raster can now be plotted in its coordinate system, passing the array elev along with the transformation matrix new_transform to rasterio.plot.show (Figure 1.2).

plot(elev_raster)
Figure 1.2: Plot of the elev raster, a minimal example of a continuous raster, created from scratch

The grain raster can be plotted the same way, as we are going to use the same transformation matrix for it as well (Figure 1.3).

plot(Raster(grain, (new_x, new_y); crs = GFT.EPSG(4326)))
Figure 1.3: Plot of the grain raster, a minimal example of a categorical raster, created from scratch

At this point, we have two rasters, each composed of an array and related dimension lookups. We can work with the raster using Rasters.jl by:

  • Keeping in mind that any other layer we use in the analysis is in the same CRS

Finally, to export the raster for permanent storage, along with the spatial metadata, we need to go through the following steps:

  1. Create a raster file (where we set the lookups and the CRS, among other settings)
  2. Write the array with raster values into the connection
  3. Close the connection

Donโ€™t worry if the code below is unclear; the concepts related to writing raster data to file will be explained in ?sec-data-output-raster. For now, for completeness, and also to use these rasters in subsequent chapters without having to re-create them from scratch, we just provide the code for exporting the elev and grain rasters into the output directory. In the case of elev, we do it as follows with the Rasters.write functions and methods of the Rasters.jl package.

write("output/elev.tif", elev_raster; force = true)
"output/elev.tif"

Note that the CRS we (arbitrarily) set for the elev raster is WGS84, defined using crs=4326 according to the EPSG code.

Exporting the grain raster is done in the same way, with the only differences being the file name and the array we write into the connection.

write("output/grain.tif", Raster(grain, (new_x, new_y); crs = GFT.EPSG(4326)); force = true)
"output/grain.tif"

As a result, the files elev.tif and grain.tif are written into the output directory. We are going to use these small raster files later on in the examples (for example, ?sec-raster-subsetting).

Note that the transform matrices and dimensions of elev and grain are identical. This means that the rasters are overlapping, and can be combined into one two-band raster, processed in raster algebra operations (?sec-map-algebra), etc.